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Abstract

This paper proposes a general procedure to construct estimators for exchangeable

network models. For any network model, consider an auxiliary i.i.d. model where

each observation has the same distribution as any observation in the original model.

The procedure returns estimators for the original model whenever valid estimators are

known in the auxiliary i.i.d. model.

This paper then studies the asymptotic behavior of the “the average MLE”, the

estimators returned by the procedure for parametric binomial network models. I show

that the average MLE behaves asymptotically like the composite maximum likelihood

estimator. Interestingly, the average MLE does not require the entire network to be

observed. For instance, I show that for a balanced bipartite graph, observing almost

any sub-graph with more than N
3
2
+ϵ edges for some ϵ > 0 (out of the total N2 edges) is

enough for the asymptotic result to hold. These results are readily extendable beyond

the binomial model.

1 Introduction

Consider a the following general model:

Yij := h(Xi, Xj, Ui, Uj, Vij; β) (1)

for all i, j ≤ N and for some measurable and known measurable function h, i.i.d. variables

Xi, Ui and Vij, which are also mutually independent, and for some parameter β.1 We are

interested in estimating β using the observations (Yij)i,j≤N and (Xi)i≤N .

1This model is in fact very general: any X-exchangeable random array would have a representation of the
form (1). See Crane and Towsner (2018) for details.
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Given that, in general, we know much more about i.i.d. models than about models

with dyadic dependence such as the one in the equation (1), it would interesting to extract

an i.i.d. sub-sample from a full sample (Yij) and (Xi). Observe that the set of edges

{Y1,2, Y3,4, ..., YN−1,N} (assuming N is even) are i.i.d.. Denoting Y(i) := Y2i−1,2i and X(i) :=

(X2i−1, X2i) for all i = 1..N/2, the observations (Y(i), X(i))i≤N/2 become i.i.d. and follow:

Y(i) = h(X(i), ϵ(i), β) (2)

with ϵ(i) for all i = 1..N/2. Assuming the parameter β is identified under the model (2), it

is also identified under (1). Moreover, any estimator for β with certain desirable properties

in (2) would have those same properties under (1). In fact, there are many ways to extract

i.i.d. sub-samples like the one used in (2): for any permutation σ ∈ SN , the observations

{Yσ(2i−1),σ(2i), i = 1..N/2} are i.i.d..

This approach is too naive, it disregards most of the data. A more sensible estimator

would be one that averages all - or a large number of - the estimators obtained through

the i.i.d. sub-samples. This paper studies these averaged estimator for parametric binomial

models (e.g. logit models). I show that if the set of permutations used to extract the i.i.d.

samples is “diverse” enough, that is, if the sub-samples do not intersect too much (in a

sense that I precise in the proposition 4), then the “average MLE” has the same asymptotic

distribution as the composit maximum likelihood estimator (c.f. section 4.2. in Graham

(2020) for details on the composite maximum likelihood). In the next section, I formally

describe the procedure, the diversity and condition and show the asymptotic distribution

of the “averaged” estimators. The third section discusses an interesting application: the

procedure can also be useful when the network is not observable in its entirety. The last

section concludes. All the proofs are relegated to the end of the paper.

2 The model and the main results

Consider the model:

Yij = 1(Xijβ0 + Ui + Uj + Vij ≥ 0) (3)

where: Xij = g(Xi, Xj) with (Xi) are i.i.d. random variable, Ui and Vij are i.i.d random

variables with mean 0 such that ϵij = Ui + Uj + Vij is distributed following CDF Φ and PDF

ϕ. β0 is the parameter of interest, β0 is known to be in a set K ⊂ Rk.

Assume we have an even number of observations i, j = 1..N , I am interested the fol-

lowing estimator: first, for every permutation σ ∈ SN consider the i.i.d. observations
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(
Yσ(2i−1),σ(2i), Xσ(2i−1),σ(2i)

)N
2

i=1
, to simplify, denote: Yσ,i := Yσ(2i−1),σ(2i) and similarly for

X. Define β̂σ the maximum likelihood estimator of β0 computed using the i.i.d. sample

(Yσ, Xσ) = (Yσ,i, Xσ,i):

β̂σ := argmax
β

N
2∑

i=1

Yσ,i log(Φ(Xσ,iβ)) + (1− Yσ,i) log(1− Φ(Xσ,iβ))

For every σ, denote: Lσ(X, Y ; β) := 2
N

∑N
2
i=1 Yσ,i log(Φ(Xσ,iβ))+(1−Yσ,i) log(1−Φ(Xσ,iβ)).

Fix some set S ⊂ SN , define:

β̂S :=
1

|S|
∑
σ∈S

β̂σ

the objective is to determine the asymptotic distribution of β̂S.

Note that for any σ ∈ SN , whenever β̂σ is an interior point of the parameter space K:

0 =
∂Lσ(X, Y ; β̂σ)

∂β
=

∂Lσ(X, Y ; β0)

∂β
+

∂2Lσ(X, Y ; β̄σ)

∂β2
(β̂σ − β0)

for some β̄σ ∈ [β0, β̂σ].
2 Therefore:

β̂S − β0 = − 1

|S|
∑
σ∈S

(
∂2Lσ(X, Y ; β̄σ)

∂β2

)−1
∂Lσ(X, Y ; β0)

∂β

= −Σ(β0)
−1 1

|S|
∑
σ∈S

∂Lσ(X, Y ; β0)

∂β

+
1

|S|
∑
σ∈S

Σ(β0)
−1 −

(
∂2Lσ(X, Y ; β̄σ)

∂β2

)−1
 ∂Lσ(X, Y ; β0)

∂β

(4)

where Σ(β0) := E
(

∂2Lσ(X,Y ;β0)
∂β2

)
.

Before discussing the asymptotic behavior of β̂S, a few technical comments are in order.

First, these Taylor expansions are only valid if all the β̂σ’s are interior points. How can we

be sure they are? Second, the equation (4) requires that ∂2Lσ(X,Y ;β̄σ)
∂β2 is invertible for any β̄σ

and for any σ.

The two following propositions and their corollary address these two concerns. I show that

the β̂σ’s are not only all interior points with high probability (when the true parameter is

itself an interior point), but that they are uniformly consistent as long as S does not grow too

2Throughout, as I will state in each proposition, I assume the parameter space to be convex.
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fast in N . Moreover, I show that ∂2Lσ(X,Y ;β)
∂β2 converge to their common expectation uniformly

both in σ and in β.

Further, these uniform convergence results will allow me to neglect the second term of

the equation (4): 1
|S|
∑

σ∈S

[
Σ(β0)

−1 −
(

∂2Lσ(X,Y ;β̄σ)
∂β2

)−1
]

∂Lσ(X,Y ;β0)
∂β

, relative to its first term.

That is, the asymptotic distribution of β̂S will be that of the first term of the equation (4):

−Σ(β0)
−1 1

|S|
∑

σ∈S
∂Lσ(X,Y ;β0)

∂β
.

Proposition 1. Assume

- K is compact and convex;

- X has a compact support and

- the smallest eigenvalue of Σ(β) is bounded away from 0 uniformly over β ∈ K, that is:

inf
β∈K

λmin(Σ(β)) > 0

then, for any σ ∈ SN , for any ϵ ∈ R∗
+:

P

(
sup
β∈K

||Σ(β)−1 − ∂2Lσ(X, Y ; β)

∂β2

−1

|| > ϵ

)
≤ A exp(−BN)

for some constants A and positive B that depend only on K, ϵ, ||.|| the norm chosen on the

matrix space and Σ.3

The second proposition shows that the β̂′
σs are close to the true parameter with a

probability that grows exponentially to 1 with N :

Proposition 2. Under the the assumptions of proposition 1, for all ϵ > 0 there exist scalars

A and B > 0 that do not depend on N such that:

P
(
||β̂id − β0|| > ϵ

)
≤ A exp(−BN)

where id denotes the identity permutation, i.e. id ∈ SN with id(i) = i for all i ∈ N .

3In fact, what I show is that

P

(
[
∂2Lσ(X,Y ;β)

∂β2
is not invertible for some β] OR [it is invertible AND sup

β∈K
||Σ(β)−1 − ∂2Lσ(X,Y ;β)

∂β2

−1

|| > ϵ]

)
≤ A exp(−BN)

I omit this detail in the statement of the proposition to simplify the exposition.
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That each estimator β̂σ is close to the true parameter with a probability that increases

this fast (exponentially) has very strong implications: if the set S is small enough (with

a cardinality that grows polynomial in N), then the β̂σ’s are uniformly consistent almost

surely. The following corollary shows uniform consistency in probability for any set S that

grows sub-exponentially but not necessarily polinomialy!) because convergence in probability

is enough for our purposes. The claim on the uniform almost sure convergence follows by

Borel-Cantelli.

Corollary 1. In addition to the assumptions of proposition 1, assume that S grows sub-

exponentially, that is: |S| = o(exp(AN)) for all A ∈ R. Then

sup
σ∈S

|β̂σ − β0| →p 0

If in addition β0 is an interior point in K, then with probability approaching 1, βσ is in the

interior of K for all σ ∈ S.

Now that we dealt with the technical concerns regarding the validity of the Taylor

expansion in (4), the two following propositions look at the asymptotic distribution of each

of the terms in the final formula (4).

Proposition 3. Fix some (sequence) S ⊂ SN . Define

CS,ij := |{σ ∈ S : ∃k : {σ(2k − 1), σ(2k)} = {i, j}}|

the number of times the pair {i, j} appears in the subset of edges in S. In addition to the
assumptions of proposition 1, assume that

∑
i<j C

2
S,ij = o(N |S|2), then

√
NΣ(β0)

−1 1

|S|
∑
σ∈S

∂Lσ(X,Y ;β0)

∂β

→d N

0, 4× Σ(β0)
−1V ar

(
E

(
Y12

ϕ(X12β0)

Φ(X12β0)
− (1− Y12)

ϕ(X12β0)

1− Φ(X12β0)
|X1, U1

))
Σ(β0)

−1


I will delay the discussion over the new condition in this theorem:

∑
i<j C

2
S,ij = o(N |S|2)

until we state the main result in this paper in proposition 4. Putting all the previous

propositions together, we are now able to determine the asymptotic distribution of β̂S:

Proposition 4. Assume that:

- K is compact and convex;

- X has a compact support and
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- the smallest eigenvalue of Σ(β) is bounded away from 0 uniformly over β ∈ K, that is:

inf
β∈K

λmin(Σ(β)) > 0

- S grows sub-exponentially, that is: |S| = o(exp(AN)) for all A ∈ R

-
∑

i<j C
2
S,ij = o(N |S|2)

Then:

√
N(β̂S−β0) →d N

0, 4× Σ(β0)
−1V ar

(
E

(
Y12

ϕ(X12β0)

Φ(X12β0)
− (1− Y12)

ϕ(X12β0)

1− Φ(X12β0)
|X1, U1

))
Σ(β0)

−1


Remarks regarding the condition

∑
i<j C

2
S,ij = o(N |S|2)

First, notice that:

∑
i<j C

2
S,ij

N |S|2
=

∑
ij

∑
σ,π∈S 1(i, j ∈ σ ∩ π)

N |S|2

=

∑
σ,π∈S |σ ∩ π|
N |S|2

where I notationaly identify permutations with perfect matchings (sets of edges), so that

σ ∩ π := {{i, j} : ∃k, k′ s.t. {i, j} = {σ(2k − 1), σ(2k)} = {π(2k′ − 1), π(2k′)}}. The

condition
∑

i<j C
2
S,ij = o(N |S|2) is then equivalent to

∑
σ,π∈S |σ ∩ π| = o(N |S|2). This

alternative formulation clarifies the need for the condition: it is a diversification requirement

on the set S. S is not allowed to include permutations (perfect matchings) that share too

many edges. Specifically, the average overlap between all the perfect matchings in S shouldn’t

grow faster than N .

This condition restricts the choice of the set of permutations |S|, for instance, |S| can’t
be bounded (as a function of N), since for all i, j:

C2
S,ij ≥ CS,ij

therefore: ∑
i<j

C2
S,ij ≥

∑
i<j

CS,ij =
N − 1

2
|S|

if |S| does not go to infinity as N → ∞, then the condition
∑

i<j C
2
S,ij = o(N |S|2) can’t be

satisfied.
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On the other side, any S such that CS,ij ∈ {0, 1} for all i, j, i.e. where each pair appears

at most once, and such that |S| → +∞ as N → ∞, satisfies the condition. That is because

in that case: C2
S,ij = CS,ij for all i, j, therefore

∑
i<j C

2
S,ij =

∑
i<j CS,ij =

N−1
2

|S| = o(N |S|2).
Such an S is always guaranteed to exist. Fix some N (even) and consider the set of

permutations where I first include the identity permutation, then I ”rotate” the second

elements in each pair (rotate the even indices). In other words, consider the following set of

permutations:

S := {(1, 2, 3, 4, ..., N − 3, N − 2, N − 1, N);

(1, 4, 3, 6, ..., N − 3, N,N − 1, 2);

(1, 6, 3, 8, ..., N − 3, 2, N − 1, 4);

.

.

.

(1, N, 3, 2, ..., N − 3, N − 4, N − 1, N − 2)}

where σ = (i1, ..., iN) denotes the permutation σ(k) = ik. Notice that the odd indices (1,3,

...) do not change from one permutation to the other, whereas the even indices are rotated.

In this example, |S| = N
2
and CS,ij ∈ {0, 1} for all i, j.

For computational reasons, one would want to choose a set S that is as small as possible.

Any subset of S defined above would work provided that its size explodes with N .

A weaker sufficient condition for
∑

i<j C
2
S,ij = o(N |S|2) would be that each edge is allowed

to be repeated in S at most cN = o(|S|). In which case, for any pair {i, j}:

C2
S,ij ≤ cNCS,ij

so: ∑
i<j

C2
S,ij ≤ cN

∑
i<j

CS,ij = cN
N − 1

2
|S| = o(N |S|2)

as desired.

Importantly, S can be random as long as it is independent from all other variables (X, U

and V ). In fact, picking a random S can relieve from the burden of verifying the condition∑
i<j C

2
S,ij = o(N |S|2) as discussed in the following corollary.

Corollary 2. Assume that:

- K is compact convex;
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- X has a compact support and

- the smallest eigenvalue of Σ(β) is bounded away from 0 uniformly over β ∈ K, that is:

inf
β∈K

λmin(Σ(β)) > 0

- For all N , the perfect matchings in S are drawn uniformly with replacement from the

set of perfect matchings and |S| is a deterministic function of N with: |S| = O(log(N)).

Then:

√
N(β̂S−β0) →d N

0, 4× Σ(β0)
−1V ar

(
E

(
Y12

ϕ(X12β0)

Φ(X12β0)
− (1− Y12)

ϕ(X12β0)

1− Φ(X12β0)
|X1, U1

))
Σ(β0)

−1


An interesting application is one where the econometrician doesn’t observe the complete

N -node network, but can only observe a subgraph containing only a subset of SN . I discuss

this application in the next section.

3 The average estimator for networks with missing data

Assume that YN = (Yij)i,j≤N is generate following equation (3) as before. However, assume

that now the econometrician cannot observe the entire network, instead, the econometrician

observes a subgraph of Y only. Specifically, assume there is a random graph GN = (Gij)i,j≤N

with Gij ∈ {0, 1} for all i, j such that

1. for all i, j ≤ N , Yij is observed if and only if Gij = 1 and

2. GN and YN are independent.

If GN has a set of perfect matchings SN that meets the conditions of proposition 4 above,

that is such that SN grows sub-exponentially and
∑

i<j C
2
S,ij = o(N |S|2), then SN can be

used to construct the estimator β̂SN
and the proposition 4 can be readily applied. However,

checking that such a set SN exists is hard. To the best of my knowledge, using the fastest

algorithms available, the enumeration of all the perfect matchings in GN can performed at

a time complexity O(N)× the number of perfect matchings in GN (Uno (1997)). As in the

corollary 2, we can get around this difficulty by sampling from SN , as long as we know that∑
i<j C

2
S,ij = op(N |S|2) (there is no need to assume that |SN | grows sub exponentially).

Proposition 5. Assume that:
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- K is compact convex.

- X has a compact support.

- the smallest eigenvalue of Σ(β) is bounded away from 0 uniformly over β ∈ K, that is:

inf
β∈K

λmin(Σ(β)) > 0

- Assume the set SN of all perfect matchings in GN is such that
∑

i<j C
2
SN ,ij = op(N |SN |2).

For all N , construct S̃N , a tuple of perfect matchings uniformly drawn (with replacement)

from SN with a deterministic cardinality and |S̃N | → +∞. Then:

√
N(β̂S̃ − β0)

→d N

0, 4× Σ(β0)
−1V ar

(
E

(
Y12

ϕ(X12β0)

Φ(X12β0)
− (1− Y12)

ϕ(X12β0)

1− Φ(X12β0)
|X1, U1

))
Σ(β0)

−1


Thanks to the proposition 5, we no longer need to check that

∑
i<j C

2
S,ij = o(N |S|2)

conditional on GN as suggested by the proposition 4. It is instead enough that the underlying

model that generates GN be such that
∑

i<j C
2
S,ij = op(N |S|2) in probability. But how large is

the class of models for GN satisfying
∑

i<j C
2
S,ij = op(N |S|2)? The next proposition provides

a partial answer for bipartite graphs.4

For the purposes of proposition 6 only, consider the following model instead of model (3):

Yij = 1(Xijβ0 + Ui +Wj + Vij ≥ 0) (5)

for i ∈ N and j ∈ M , N and M being two sets of nodes. We assume |N | = |M |, a necessary

condition for perfect matchings to exist. We will overload the notation N : when there is no

ambiguity, it will also refer to the cardinality |N |.

Proposition 6. For any ϵ > 0, if GN is drawn uniformly from the set of bipartite graphs

with at least N
3
2
+ϵ edges, then

∑
i<j C

2
S,ij = op(N |S|2).

4 Concluding remarks

This paper offers a systematic procedure to translate what we know about i.i.d. models

to exchangeable array models. It could be particularly useful for models where no other

4The model in equation (3) that is one for a non bi-partite graph YN . However, the propositions 1 to 5
would hold, under the same proofs, for the bipartite graph model (5).

9



estimators have been analysed. I am particularly thinking about semi-parametric models

where the composite likelihood estimator is not available. The proofs for other models would

be basically the same as the ones in this paper at the cost of adding some smoothness

assumptions (that are satisfied by the binomial parametric model studied here and that I did

not need to emphasize).

The estimator, however, is likely to be (very) inefficient. It does not exploit the dependence

structure that dyadic models exhibit. That is clear in the parametric model studied in this

paper: the average MLE cannot outperform the composite MLE, which also suffers from the

same flaw. However, one question that I am leaving under the shadow is: what happens if

we take exponentially many i.i.d. samples? If we do, the average MLE -were it to be well

defined - would be computationally infeasible, but what would its theoretical properties be?

clearly, from the proofs in this paper (again, if the MLE’s are all defined and are all interior

points!), the asymptotic distribution of the average MLE would be nothing like the composite

maximum likelihood anymore.

Perhaps related to the question of inefficiency, the use of this procedure for data sets with

missing observations could be interesting. First, it intuitively illustrates how inefficient the

estimators obtained are: in the last proposition, I show that in general, for balanced bi-partite

models, around 1/
√
Nth of the total number of observations (edges) is in general enough

to perform like the estimator returned by the procedure if every edge were used (or like the

composite MLE)! Second, the result in the last section sheds only a very dim light over the

question of what observations are allowed to be missing in general graphs: non bi-partite or

unbalanced bi-partite. The same proof strategy does not seem to work for other settings and

I am curious to know what other models for the observable graph (GN in the last section)

would guarantee that the diversity condition on the set of all perfect matching be satisfied

with high probability. Of course, allowing the observables’s graph GN to be correlated with

the actual graph YN is yet another interesting and probably much more challenging question.

I have not put enough thought towards an answer to the last question yet.

Finally, this paper did not discuss how the standard errors could be estimated. That

was not my focus so far. However, given that each “averaged estimator” is computed based

on a set of i.i.d. sub-samples that are themselves drawn i.i.d. uniformly from the set of

available i.i.d. sub-samples, we end-up with a huge number of “averaged” estimators. The

idea of computing the standard errors by computing multiple “averaged” estimators each on

a different i.i.d. sub-sample, then computing an “empirical standard error” based on all these

“averaged” estimators, is an appealing place to start thinking about standard error estimation.

Beautiful stuff ahead!
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5 Proofs

5.1 Proof of proposition 1

Proof. ( Proposition 1) The proof follows in 3 steps:

Step 1: Prove that for any continuous function W from support(X)× support(Y )×K

into R, with mean: µ(β) = E(W (Xσ,i, Yσ,i, β)), there are constants A′ and B′ such that for

all ϵ > 0:

P

(
sup
β∈K

|W̄ (β)− µ(β)| > 4ϵ

)
≤ A′ exp(−B′N)

with W̄ (β) := 2
N

∑N/2
i=1 W (Xσ,i, Yσ,i; β)

Fix ϵ > 0. For any β ∈ K, define:

λδ(β) := E
(
supβ′:||β′−β||≤δ |W (Xσ,i, Yσ,i, β)−W (Xσ,i, Yσ,i, β

′)|
)
and δ > 0 such that λδ(β) <

ϵ for all β ∈ K. Such δ exists because by theorem 9.1 in Keener (2010):

sup
β∈K

λδ(β) →δ→0 0

Since K is compact, let (βi)i=1..m be a finite set of elements in K such that the open balls Oi

centered at βi with radius δ cover K. Following the proof of theorem 9.2 in Keener (2010),

note that:

sup
β∈K

|W̄ (β)− µ(β)| = max
i=1..m

sup
β∈Oi

|W̄ (β)− µ(β)|

≤ max
i=1..m

sup
β∈Oi

|W̄ (β)− W̄ (βi)|+ |W̄ (βi)− µ(βi)|+ |µ(βi)− µ(β)|

Note that for all i and for all β ∈ Oi:

|µ(βi)− µ(β)| ≤ λδ(betai) ≤ ϵ

second, observe:

M̄δ,N(β) :=
2

N

N
2∑

i=1

sup
β′:||β′−β||≤δ

|W (Xσ,i, Yσ,i, β)−W (Xσ,i, Yσ,i, β
′)|

12



and note that:

max
i=1..m

sup
β∈Oi

|W̄ (β)− W̄ (βi)| ≤ max
i=1..m

M̄δ,N(βi)

≤ max
i=1..m

|M̄δ,N(βi)− λδ(βi)|+ max
i=1..m

λδ(βi)

≤ max
i=1..m

|M̄δ,N(βi)− λδ(βi)|+ ϵ

Therefore:

sup
β∈K

|W̄ (β)− µ(β)| ≤ max
i=1..m

|M̄δ,N(βi)− λδ(βi)|+ max
i=1..m

|W̄ (βi)− µ(βi)|+ 2ϵ

Hence:

P(sup
β∈K

|W̄ (β)− µ(β)| ≥ 4ϵ) ≤ P(max
i=1..m

|M̄δ,N(βi)− λδ(βi)|+ max
i=1..m

|W̄ (βi)− µ(βi)|+ 2ϵ ≥ 4ϵ)

≤ P(max
i=1..m

|M̄δ,N(βi)− λδ(βi)|+ max
i=1..m

|W̄ (βi)− µ(βi)| ≥ 2ϵ)

≤ P(max
i=1..m

|M̄δ,N(βi)− λδ(βi)|| ≥ ϵ) + P(max
i=1..m

|W̄ (βi)− µ(βi)| ≥ ϵ)

≤ m×
(
P(|M̄δ,N(β1)− λδ(β1)|| ≥ ϵ) + P(|W̄ (β1)− µ(β1)| ≥ ϵ)

)
By the compactness of support(X)×support(Y )×K and the continuity ofW , (W (Xσ,i, Yσ,i, β1)−
µ(β1))i and supβ′:||β′−β1||≤δ |W (Xσ,i, Yσ,i, β1) − W (Xσ,i, Yσ,i, β

′)| − λδ(β1))i are i.i.d. and

bounded, Hoeffding’s inequality allows to conclude.

Step 2: Show that for any σ ∈ SN , for any ϵ ∈ R∗
+ there exist constants some constants

A′′ and B′′ that depend only on K and ϵ

P

(
sup
β∈K

||Σ(β)− ∂2Lσ(X, Y ; β)

∂β2
|| > 4ϵ

)
≤ A′′ exp(−B′′N)

To see that, it is enough to apply the result in step 1 element wise on the matrix ∂2Lσ(X,Y ;β)
∂β2

then use a union bound to obtain the desired result for the max norm ||.||∞.

Step 3: Show the final result.

Note that for any β, and any given σ (using a sub-multiplicative matrix norm this time):

||Σ(β)−1 − ∂2Lσ(X, Y ; β)

∂β2

−1

|| ≤ ||Σ(β)−1|| × ||∂
2Lσ(X, Y ; β)

∂β2

−1

|| × ||Σ(β)− ∂2Lσ(X, Y ; β)

∂β2
||

≤ ||Σ(β)−1||
λmin(

∂2Lσ(X,Y ;β)
∂β2 )

× ||Σ(β)− ∂2Lσ(X, Y ; β)

∂β2
||

13



where λmin(.) returns the smallest eigen value. Take some x ∈ Rk such that ||x|| = 1 and

x′ ∂2Lσ(X,Y ;β)
∂β2 x = λmin(

∂2Lσ(X,Y ;β)
∂β2 ), then :

λmin(Σ(β))−||Σ(β)−∂2Lσ(X, Y ; β)

∂β2
|| ≤ x′Σ(β)x−x′

(
Σ(β)− ∂2Lσ(X, Y ; β)

∂β2

)
x = x′∂

2Lσ(X, Y ; β)

∂β2
x

implying:5

λmin(Σ(β))− ||Σ(β)− ∂2Lσ(X, Y ; β)

∂β2
|| ≤ λmin(

∂2Lσ(X, Y ; β)

∂β2
)

under the event: supβ ||Σ(β)−
∂2Lσ(X,Y ;β)

∂β2 || < infβ λmin(Σ(β)) so:

||Σ(β)−1 − ∂2Lσ(X, Y ; β)

∂β2

−1

|| ≤ ||Σ(β)−1||
λmin(Σ(β))− ||Σ(β)− ∂2Lσ(X,Y ;β)

∂β2 ||
× ||Σ(β)− ∂2Lσ(X, Y ; β)

∂β2
||

≤
supβ{||Σ(β)−1||}

infβ{λmin(Σ(β))} − ||Σ(β)− ∂2Lσ(X,Y ;β)
∂β2 ||

× ||Σ(β)− ∂2Lσ(X, Y ; β)

∂β2
||

Therefore for any ϵ > 0, there exists a function that only depends on epsilon γ(ϵ) > 0 such

that, under the event under the event EN := supβ ||Σ(β)−
∂2Lσ(X,Y ;β)

∂β2 || < infβ λmin(Σ(β)) we

have

sup
β

||Σ(β)−1 − ∂2Lσ(X, Y ; β)

∂β2

−1

|| ≥ 4ϵ ⇒ sup
β

||Σ(β)− ∂2Lσ(X, Y ; β)

∂β2
|| ≥ γ(ϵ)

5Note here that we could similarly show:

λmin(
∂2Lσ(X,Y ;β)

∂β2
)− ||Σ(β)− ∂2Lσ(X,Y ;β)

∂β2
|| ≤ λmin(Σ(β))

implying that:

||λmin(
∂2Lσ(X,Y ;β)

∂β2
)− λmin(Σ(β))|| ≤ ||Σ(β)− ∂2Lσ(X,Y ;β)

∂β2
||

and leading to the result alluded to in a footnote to the proposition’s statement:

P

(
∂2Lσ(X,Y ;β)

∂β2
is not invertible for some β

)
≤ A′′ exp(−B′′N)

for some generic A′′, B′′ > 0 that are independent of N.
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then:

P

(
sup
β

||Σ(β)−1 − ∂2Lσ(X, Y ; β)

∂β2

−1

|| ≥ 4ϵ

)
= P

(
sup
β

||Σ(β)−1 − ∂2Lσ(X, Y ; β)

∂β2

−1

|| ≥ 4ϵ;EN

)

+ P

(
sup
β

||Σ(β)−1 − ∂2Lσ(X, Y ; β)

∂β2

−1

|| ≥ 4ϵ;not(EN)

)

≤ P

(
sup
β

||Σ(β)− ∂2Lσ(X, Y ; β)

∂β2
|| ≥ γ(ϵ);EN

)
+ P(not(EN))

≤ P

(
sup
β

||Σ(β)− ∂2Lσ(X, Y ; β)

∂β2
|| ≥ γ(ϵ)

)

+ P

(
sup
β

||Σ(β)− ∂2Lσ(X, Y ; β)

∂β2
|| ≥ inf

β
λmin(Σ(β))

)

which allows to conclude by step 2.

5.2 Proof of proposition 2

Proof. Note that:

β̂id − β0 =

(
∂2Lid(X, Y ; β̄id)

∂β2

)−1
∂Lid(X, Y ; β0)

∂β

= −Σ(β̄id)
−1∂Lid(X, Y ; β0)

∂β
+

Σ(β̄id)
−1 −

(
∂2Lid(X, Y ; β̄id)

∂β2

)−1
 ∂Lid(X, Y ; β0)

∂β

Thanks to the compactness of the support of X and of K, ∂Lid(X,Y ;β0)
∂β

is bounded by some

constant M and β → Σ(β)−1 is bounded by some constant L.

Hence:

||β̂id − β0|| ≤ L||∂Lid(X, Y ; β0)

∂β
||+M sup

β∈K
||Σ(β)−1 − ∂2Lσ(X, Y ; β)

∂β2

−1

||

Applying the Hoeffding bound to the first term and proposition 1 to the second, we obtain

the desired result.
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5.3 Proof of corollary 1

Proof. Fix ϵ > 0.

P(sup
σ∈S

|β̂σ − β0| > ϵ) ≤ |S|P(|β̂id − β0| > ϵ)

and the proposition (2) completes the proof.

5.4 Proof of proposition 3

Proof. Fix some S ⊂ SN and some λ ∈ Rk. I want to determine the asymptotic distribution

of:

λ′ 1

|S|
Σ(β0)

−1
∑
σ∈S

∂Lσ(X, Y ; β0)

∂β
= λ′ 1

|S|N/2

∑
σ∈S

N
2∑

i=1

(
Yσ,i

ϕ(Xσ,iβ0)

Φ(Xσ,iβ0)
− (1− Yσ,i)

ϕ(Xσ,iβ0)

1− Φ(Xσ,iβ0)

)
× Σ(β0)

−1Xσ,i

=:
1

|S|N/2

∑
σ∈S

N
2∑

i=1

f(Xσ,i, Yσ,i)

where f(Xσ,i, Yσ,i) :=
(
Yσ,i

ϕ(Xσ,iβ0)

Φ(Xσ,iβ0)
− (1− Yσ,i)

ϕ(Xσ,iβ0)

1−Φ(Xσ,iβ0)

)
λ′Σ(β0)

−1Xσ,i. Although f de-

pends on λ and β, they are omitted to simplify the notation. We can rearrange:

λ′ 1

|S|
∑
σ∈S

∂Lσ(X, Y ; β0)

∂β
=

1

|S|N/2

∑
i<j

CS,ijf(Xi,j, Yi,j)

with CS,ij := |{σ ∈ S : ∃k : {σ(2k − 1), σ(2k)} = {i, j}}|, the number of times the pair {i, j}
appears in the subset of observations generated by S. Observe that for all i, j, by definition:

CS,ij = CS,ji and CS,ii = 0. Also note that for all i:

N∑
j=1

CS,ij = |S|

since every pair appears exactly once per permutation σ ∈ S. Denote:

q(Xi, Xj, Ui, Uj) := E(f(Xi,j, Yi,j)|Xi, Xj, Ui, Uj)

h(Xi, Ui) := E(q(Xi, Xj, Ui, Uj)|Xi, Ui)
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and

q̃(Xi, Xj, Ui, Uj) := q(Xi, Xj, Ui, Uj)− h(Xi, Ui)− h(Xj, Uj)

where it is assumed that CS,ii = 0 for all i and CS,ij = CS,ji for all i and j. Observe,

following O’Neil and Redner (1993), that

∑
i<j

CS,ijq(Xi, Xj, Ui, Uj) =
∑
i<j

CS,ij q̃(Xi, Xj, Ui, Uj) +
∑
i

 N∑
j=1

CS,ij

h(Xi, Ui)

=
∑
i<j

CS,ij q̃(Xi, Xj, Ui, Uj) + |S|
∑
i

h(Xi, Ui)

So:

λ′Σ(β0)
−1 1

|S|
∑
σ∈S

∂Lσ(X, Y ; β0)

∂β
=

1

|S|N/2

∑
i<j

CS,ij

(
f(Xi,j, Yi,j)− q(Xi, Xj, Ui, Uj)

)
+

1

|S|N/2

∑
i<j

CS,ij q̃(Xi, Xj, Ui, Uj) +
2

N

∑
i

h(Xi, Ui)

(6)

We have:

V ar

∑
i<j

CS,ij

(
f(Xi,j, Yi,j)− q(Xi, Xj, Ui, Uj)

) = V ar
(
f(X1,2j, Y1,2)− q(X1, X2, U1, U2)

)∑
i<j

C2
S,ij

V ar

∑
i<j

CS,ij q̃(Xi, Xj, Ui, Uj)

 = V ar
(
q̃(X1, X2, U1, U2)

)∑
i<j

C2
S,ij

(7)

Assuming : ∑
i<j

C2
S,ij = o(N |S|2)

then:

√
Nλ′Σ(β0)

−1 1

|S|
∑
σ∈S

∂Lσ(X, Y ; β0)

∂β
=

2√
N

∑
i

h(Xi, Ui) + op(1)

→d N (0, 4V ar(h(X1, U1)))

(8)

but
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V ar(h(X1, U1)) = λ′Σ(β0)
−1V ar

(
E

(
Y12

ϕ(X12β0)

Φ(X12β0

− (1− Y12)
ϕ(X12β0)

1− Φ(X12β0

|X1, U1

))
Σ(β0)

−1λ

therefore, using the wold device:

√
NΣ(β0)

−1 1

|S|
∑
σ∈S

∂Lσ(X,Y ;β0)

∂β

→d N

0, 4× Σ(β0)
−1V ar

(
E

(
Y12

ϕ(X12β0)

Φ(X12β0)
− (1− Y12)

ϕ(X12β0)

1− Φ(X12β0)
|X1, U1

))
Σ(β0)

−1



5.5 Proof of proposition 4

Proof. ( Proposition 4)

Remember:

β̂S − β0 = −Σ(β0)
−1 1

|S|
∑
σ∈S

∂Lσ(X, Y ; β0)

∂β
+

1

|S|
∑
σ∈S

Σ(β0)
−1 −

(
∂2Lσ(X, Y ; β̄σ)

∂β2

)−1
 ∂Lσ(X, Y ; β0)

∂β

First, I show that:

√
N

1

|S|
∑
σ∈S

Σ(β0)
−1 −

(
∂2Lσ(X, Y ; β̄σ)

∂β2

)−1
 ∂Lσ(X, Y ; β0)

∂β
= op(1)

Note that because K is compact and β → Σ(β)−1 is conitnuously differentiable, then

β → Σ(β)−1 is Lipschitz on K, let η be the Lipschitz constant.

∣∣∣∣∣∣∣∣√N
1

|S|
∑
σ∈S

Σ(β0)
−1 −

(
∂2Lσ(X, Y ; β̄σ)

∂β2

)−1
 ∂Lσ(X, Y ; β0)

∂β

∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣√N

1

|S|
∑
σ∈S

[
Σ(β̄σ)

−1 − Σ(β0)
−1
] ∂Lσ(X, Y ; β0)

∂β

∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣√N
1

|S|
∑
σ∈S

Σ(β̄σ)
−1 −

(
∂2Lσ(X, Y ; β̄σ)

∂β2

)−1
 ∂Lσ(X, Y ; β0)

∂β

∣∣∣∣∣∣∣∣
≤

(
η sup

σ∈S
||β̂σ − β0||+ sup

β∈K
||Σ(β)−1 − ∂2Lσ(X, Y ; β)

∂β2

−1

||

)
√
N

1

|S|
∑
σ∈S

∣∣∣∣∣∣∣∣∂Lσ(X, Y ; β0)

∂β

∣∣∣∣∣∣∣∣
18



First, note:
√
N

1

|S|
∑
σ∈S

∣∣∣∣∣∣∣∣∂Lσ(X, Y ; β0)

∂β

∣∣∣∣∣∣∣∣ = Op(1)

because:

√
N

1

|S|
∑
σ∈S

∣∣∣∣∣∣∣∣∂Lσ(X, Y ; β0)

∂β

∣∣∣∣∣∣∣∣ ≤ √
N

1

|S|
∑
σ∈S

2

N

N
2∑

i=1

∣∣∣∣(Yσ,i
ϕ(Xσ,iβ0)

Φ(Xσ,iβ0)
− (1− Yσ,i)

ϕ(Xσ,iβ0)

1− Φ(Xσ,iβ0)

)
Xσ,i

∣∣∣∣
and

V ar

√
N

1

|S|
∑
σ∈S

2

N

N
2∑

i=1

∣∣∣∣(Yσ,i
ϕ(Xσ,iβ0)

Φ(Xσ,iβ0)
− (1− Yσ,i)

ϕ(Xσ,iβ0)

1− Φ(Xσ,iβ0)

)
Xσ,i

∣∣∣∣


=
N

|S|2
[|S|V ar

 2

N

N
2∑

i=1

∣∣∣∣(Yσ,i
ϕ(Xσ,iβ0)

Φ(Xσ,iβ0)
− (1− Yσ,i)

ϕ(Xσ,iβ0)

1− Φ(Xσ,iβ0)

)
Xσ,i

∣∣∣∣


+ |S|(|S| − 1)Cov(
2

N

N
2∑

i=1

∣∣∣∣(Yσ,i
ϕ(Xσ,iβ0)

Φ(Xσ,iβ0)
− (1− Yσ,i)

ϕ(Xσ,iβ0)

1− Φ(Xσ,iβ0)

)
Xσ,i

∣∣∣∣,
2

N

N
2∑

i=1

∣∣∣∣(Yσ′,i
ϕ(Xσ′,iβ0)

Φ(Xσ′,iβ0)
− (1− Yσ′,i)

ϕ(Xσ′,iβ0)

1− Φ(Xσ′,iβ0)

)
Xσ′,i

∣∣∣∣)]
≤ NV ar

 2

N

N
2∑

i=1

∣∣∣∣(Yσ,i
ϕ(Xσ,iβ0)

Φ(Xσ,iβ0)
− (1− Yσ,i)

ϕ(Xσ,iβ0)

1− Φ(Xσ,iβ0)

)
Xσ,i

∣∣∣∣


= 4V ar

(∣∣∣∣ (Y12
ϕ(X12β0)

Φ(X12β0)
− (1− Y12)

ϕ(X12β0)

1− Φ(X12β0)

)
X12

∣∣∣∣)

By proposition 1:

sup
β∈K

||Σ(β)−1 − ∂2Lσ(X, Y ; β)

∂β2

−1

|| = op(1)

and

sup
σ∈S

||β̂σ − β0|| = op(1)

since:

P(sup
σ∈S

||β̂σ − β0|| > ϵ) ≤ |S|P(||β̂id − β0|| > ϵ) → 0

where the limit is obtained by proposition 2 and by the assumption that |S| = o(exp(AN))

for all A ∈ R.
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Finally:
√
N(β̂S − β0) = −

√
NΣ(β0)

−1 1

|S|
∑
σ∈S

∂Lσ(X, Y ; β0)

∂β
+ op(1) (9)

and proposition 3 allows to conclude.

5.6 Proof of corollary 2

Proof. (Corollary 2.) Assume that for all N , S (in fact, SN) is constructed by drawing

permuations (or perfect matchings) with replacement from the set of perfect matchings.

Denote Cij,N the number of perfect matchings in which the pair i, j appears in the set SN .

Let cN be a deterministic sequence such that cN → +∞ and cN = o(|S|).
Define the events EN := {Cij,N > cN for some pair i, j}. Then:

P(EN) ≤
∑
ij

P(Cij,N > cN)

=
N(N − 1)

2
P(C12,N > cN)

=
N(N − 1)

2

|S|∑
k=cN+1

P(C12,N = k)

Let σ be the random variable corresponding to a single uniform draw from the set of all

perfect matchings (i.e. permutations in SN). For any fixed pair i, j we have:6

P(i, j ∈ σ) =

(N−2)!

(N/2−1)!2N/2−1

N !
(N/2)!2N/2

=
2N/2

N(N − 1)
=

1

N − 1

so

P(C12,N = k) =

(
|S|
k

)(
1

N − 1

)k (
N − 2

N − 1

)|S|−k

≤
(
|S|
k

)(
1

N − 1

)cN+1

6I abuse notation here: i, j ∈ σ means that the pair i, j forms an edge in the perfect matching σ, or in the
language of permutations that there exists some k such that {σ(2k − 1), σ(2k)} = {i, j}.
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and

P(EN) ≤
N(N − 1)

2

(
1

N − 1

)cN+1 |S|∑
k=cN+1

(
|S|
k

)

≤ N(N − 1)

2

(
1

N − 1

)cN+1

× 2|S|

= O

((
1

N

)CN−2
)

= o(
1

N2
)

Therefore ∑
N

P(EN) < +∞

By the Borel–Cantelli lemma:

P(lim supEN) = P(∩N≥1 ∪∞
k=N Ek) = 0

or equivalently:

P(∃N0 ∀N > N0 ∀i, j ≤ N : Cij,N ≤ cN) = 1

as shown earlier, if for all pairs i, j Cij,N ≤ cN = o(|S|), then:

∑
i<j

C2
ij,N ≤ cN

∑
i<j

Cij,N = cN × N − 1

2
|S| = o(N |S|2)

hence with probability one, the condition:
∑

i<j C
2
ij,N = o(N |S|2) is satisfied.7 The rest of

the proof for proposition 4 follows.

5.7 Proof of proposition 5

Proof. Of proposition 5 Given the conditions of the proposition, denote P̃ the probability

conditional on SN . By defintion:

C̃S̃N ,ij :=
∑
σ∈S̃N

1(ij ∈ σ)

7Here I showed that
C2

ij,N

N |S|2 → 0 almost surely. In fact, it was enough to show convergence in probability

since that is enough to obtain equation 9 and conclude.
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the terms in this sum are i.i.d. conditional on SN , because the perfect matchings in S̃N are

i.i.d., therefore:

Ẽ(C̃S̃N ,ij) = |S̃N |
CSN ,ij

|SN |
and

Ṽ(C̃S̃N ,ij) = |S̃N |
CSN ,ij

|SN |

(
1− CSN ,ij

|SN |

)
then

Ẽ(C̃2
S̃N ,ij

) = |S̃N |
CSN ,ij

|SN |
+ (|S̃N |2 − |S̃N |)

C2
SN ,ij

|SN |2

and:

Ẽ

∑i<j C̃
2
S̃N ,ij

N |S̃N |2

 =

∑
i<j CSN ,ij

N |S̃N | × |SN |
+

(
1− 1

|S̃N |

)∑
i<j C

2
SN ,ij

N |SN |2

=
1

|S̃N |
+

(
1− 1

|S̃N |

)∑
i<j C

2
SN ,ij

N |SN |2

Remember equation (6):

λ′Σ(β0)
−1 1

|S̃N |

∑
σ∈S̃N

∂Lσ(X, Y ; β0)

∂β
=

1

|S̃N |N/2

∑
i<j

C̃S̃N ,ij

(
f(Xi,j, Yi,j)− q(Xi, Xj, Ui, Uj)

)
+

1

|S̃N |N/2

∑
i<j

C̃S̃N ,ij q̃(Xi, Xj, Ui, Uj) +
2

N

∑
i

h(Xi, Ui)

equation (7) becomes:

V ar

∑
i<j

C̃S̃N ,ij

(
f(Xi,j , Yi,j)− q(Xi, Xj , Ui, Uj)

)
|(SN )N≥0, (S̃N )N≥0

 = V ar
(
f(X1,2j , Y1,2)− q(X1, X2, U1, U2)

)∑
i<j

C̃2
S̃N ,ij

V ar

∑
i<j

C̃S̃N ,ij q̃(Xi, Xj , Ui, Uj)|(SN )N≥0, (S̃N )N≥0

 = V ar
(
q̃(X1, X2, U1, U2)

)∑
i<j

C̃2
S̃N ,ij
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then

V ar[
1

|S̃N |
√
N

∑
i<j

C̃S̃N ,ij(f(Xi,j , Yi,j)−q(Xi, Xj , Ui, Uj))|(SN )N≥0]

= V ar
(
f(X1,2j , Y1,2)− q(X1, X2, U1, U2)

)
Ẽ

 1

|S̃N |
√
N

∑
i<j

C̃2
S̃N ,ij


+ Ṽ

E

∑
i<j

C̃S̃N ,ij

(
f(Xi,j , Yi,j)− q(Xi, Xj , Ui, Uj)

)
|(SN )N≥0, (S̃N )N≥0




= V ar
(
f(X1,2j , Y1,2)− q(X1, X2, U1, U2)

) 1

|S̃N |
+

(
1− 1

|S̃N |

) ∑
i<j C

2
SN ,ij

N |SN |2


where the second equality results from the observation that for all i, j

E
(
C̃S̃N ,ij

(
f(Xi,j, Yi,j)− q(Xi, Xj, Ui, Uj)

)
|(SN)N≥0, (S̃N)N≥0

)
= 0

likewise:

V ar[
1

|S̃N |
√
N

∑
i<j

C̃S̃N ,ij q̃(Xi, Xj , Ui, Uj)|(SN )N≥0, (S̃N )N≥0]

= V ar
(
q̃(X1, X2, U1, U2)

) 1

|S̃N |
+

(
1− 1

|S̃N |

) ∑
i<j C

2
SN ,ij

N |SN |2


so equation (8) still holds, conditionally on (SN)N≥0 this time:

√
Nλ′Σ(β0)

−1 1

|S|
∑
σ∈S

∂Lσ(X, Y ; β0)

∂β
=

2√
N

∑
i

h(Xi, Ui) + op(1)

→d N (0, 4V ar(h(X1, U1)))

by dominated convergence, equation (8) also holds unconditionally. The rest of the argument

for propositions 3 and 4 follows.

5.8 Proof of proposition 6

Proof. Proposition 6.

The proof is for some fixed ϵ > 0.

First, without loss of generality, I assume that the sequence of graphs GN are independent.

Otherwise, I would work on another sequence (a coupling) (G′
N)N such that GN =d G

′
N and

the G′
N are independent. In that case,

∑
i<j C

2
S′,ij

N |S′|2 =d

∑
i<j C

2
S,ij

N |S|2 (the first ratio is computed on
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G′
N and the second on GN), therefore proving the proposition for G′

N implies that it also

holds for GN .

Let e(GN ) denote the number of edges of the graph GN . I will show the result conditionally

on the sequence (e(GN )N )N≥0, then proposition 6 will follow by dominated convergence. For

the rest of the proof, the ”ambient” probability is that conditional on (e(GN)N)N≥0: I will

omit to condition by (e(GN)N)N≥0 in my notation. Further, I will use the notation eN for

e(GN).

Note that, conditional on e(GN), GN is uniformly drawn from the set of graphs with

exactly e(GN) edges.

First, I show that as N → +∞:

E(SN) ∼ N !

(
eN
N2

)N

exp

−1

2

(
N2

eN
− 1

)
E(S2

N) ∼ E(SN)
2

E(C2
SN ,ij) ∼ (N − 1)!2 exp

(
1− N2

eN

)(
eN
N2

)2N−1

(10)

The first two statements result immediately from the theorems 1 and 2 in O’Neil (1970)

(cf. the section 8.1 in Lovász and Plummer (2009) for details about the link between perfect

matchings in a bipartite graph and the permanent of its bi-adjacency matrix). The proof for

E(C2
SN ,ij) follows similar steps as those of the proofs for theorems 1 and 2 in O’Neil (1970).

As in O’Neil (1970), denote, for any permutation σ ∈ SN ,

xσ := 1
{
(i, σ(i)) is an edge in GN for all i ∈ N

}

and for any integers M and k ≤ M , define:

BM
k := {(σ, π) ∈ S2

M : |{i ∈ M : π(i) = σ(i)}| = k}

that is, if we identify every permutation in SM to a perfect matching between two sets of

carnality M each, then BM
k is the set of perfect matching pairs that have exactly k edges in

common.

By definition:

CSN ,ij =
∑

σ∈SN :σ(i)=j

xσ
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and:

C2
SN ,ij =

∑
σ,π∈SN :σ(i)=π(i)=j

xσxπ

so

E(C2
SN ,ij) =

N∑
k=1

|BN−1
k−1 |P(xσxπ = 1|(π, σ) ∈ BN

k )

the equation (1.9) in O’Neil (1970) yields:

|BN
k | = N !2

k!
e−1

(
1 +O(

1

(N − k + 1)!)

)
and for k ≤ k1 := [N5/8], equation (1.14) in O’Neil (1970):

P(xσxπ = 1|(π, σ) ∈ BN
k ) =

(
eN
N2

)2N−k

exp

−2

(
1− k

N

)2
(
N2

eN
− 1

)(1 +O(N−1/4−ϵ) +O(N−2ϵ)
)
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hence

E(C2
SN ,ij) = (N − 1)!2 exp

(
1− 2N2

eN

)(
eN
N2

)2N k1∑
k=1

1

(k − 1)!

[
N2

eN
exp

(
4(N/eN − 1/N)

)]k

×
(
1 +O(N−1/4−ϵ) +O(N−2ϵ)

)
+

N∑
k=k1+1

|BN−1
k−1 |P(xσxπ = 1|(π, σ) ∈ BN

k )

= (N − 1)!2 exp

(
1− 2N2

eN

)(
eN
N2

)2N

×

[
N2

eN
exp

(
4(N/eN − 1/N)

)]

×
∞∑
k=0

1

(k − 1)!

[
N2

eN
exp

(
4(N/eN − 1/N)

)]k
× (1 + o(1))×

(
1 +O(N−1/4−ϵ) +O(N−2ϵ)

)
+

N∑
k=k1+1

|BN−1
k−1 |P(xσxπ = 1|(π, σ) ∈ BN

k )

= (N − 1)!2 exp

(
1− 2N2

eN

)(
eN
N2

)2N

×

[
N2

eN
exp

(
4(N/eN − 1/N)

)]

× exp

[
N2

eN
exp

(
4(N/eN − 1/N)

)]
× (1 + o(1))

+
N∑

k=k1+1

|BN−1
k−1 |P(xσxπ = 1|(π, σ) ∈ BN

k )

= (N − 1)!2 exp

(
1− N2

eN

)(
eN
N2

)2N−1

× (1 + o(1))

+
N∑

k=k1+1

|BN−1
k−1 |P(xσxπ = 1|(π, σ) ∈ BN

k )

noting that |BN
k | ≤ N !2

k!
(from equation 1.8 in O’Neil (1970)), we have:

N∑
k=k1+1

|BN−1
k−1 |P(xσxπ = 1|(π, σ) ∈ BN

k ) ≤
N∑

k=k1+1

(N − 1)!2

(k − 1)!

(
eN
N2

)2N−k

= (N − 1)!2
(
eN
N2

)2N−1

×O(N−(1/8)N5/8

)

finally:

E(C2
SN ,ij) ∼ (N − 1)!2 exp

(
1− N2

eN

)(
eN
N2

)2N−1
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Given the asymptotic results in (10), I can now show that:

|SN |
E(|SN |)

→p 1 (11)

indeed, for any ϵ > 0:

P
(
| |SN |
E(|SN |)

− 1| > ϵ

)
= P

(
||SN | − E(|SN |)|

E(|SN |)
> ϵ

)
≤ V ar(|SN |)

ϵ2E(|SN |)2

=
E(|SN |2)− E(|SN |)2

ϵ2E(|SN |)2

→ 0

where the inequality is Markov’s and where the limit is obtained thanks to the equation (10).

Observe that:

E(
∑

ij C
2
SN ,ij)

NE(|SN |2)
∼

N2 × (N − 1)!2 exp
(
1− N2

eN

) (
eN
N2

)2N−1

N ×N !2
(
eN
N2

)2N
exp

(
1− N2

eN

)
=

N

eN

→ 0

therefore: ∑
ij C

2
SN ,ij

NE(|SN |2)
→p 0

then the equation (11) gives: ∑
ij C

2
SN ,ij

N |SN |2
→p 0

as desired.
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